5.4. MEA: Multi-Electrode Array Processing

Check examples here: Multi-Electrode-Array (MEA)

https://raw.githubusercontent.com/spkit/spkit.github.io/master/assets/images/docs_fig/mea_proce_2.png

#TODO

Multi-Electrode Arrays System utilies an array of electrodes mounted on a small plate as a grid electrodes (e.g. 60) evenly spaced (700mm apart). It is used to analyse the eletrophysiology of cells/tissues under different clinical conditions by stimulating with certain voltage on a regular intervals. As shown in figure below, a plate of MEA system of 60 electrodes (source: https://www.multichannelsystems.com/products/meas-60-electrodes). One of the commonly used research field is the cardiac electrophysiology.

https://raw.githubusercontent.com/spkit/spkit.github.io/master/assets/images/docs_fig/mea_plate_source.png

This python library analyse the recorded signal file, by extracting the electrograms (EGMs) from signal recoding of each eletrodes, and extracting the features of each EGM.

#TODO

https://raw.githubusercontent.com/spkit/spkit.github.io/master/assets/images/docs_fig/mea_proce_3.png

5.4.1. Complete Analysis of a recording

#TODO

One of the simple function to provide complete analysis of recorded file is to use `spkit.mea.analyse_mea_file` function. This uses the default settings of all the paramters for extracting electrograms, identifying bad eletrodes, extracting features and plotting figures.

`spkit.mea.analyse_mea_file` needs two essential inputs, `files_name` : a full path of recoding file in ‘.h5’ format and `stim_fhz` frequency of stimulus in Hz.

An example with minimal settings<auto_examples/multielectrode-array/plot_mea_minimal_setting_example.html>

../_images/sphx_glr_plot_mea_minimal_setting_example_004.png
import spkit as sp
sp.mea.analyse_mea_file(files_name,stim_fhz=1)
https://raw.githubusercontent.com/spkit/spkit.github.io/master/assets/images/docs_fig/mea_proce_3.png

5.4.2. Step-wise Analysis

#TODO

There are 13 steps to analyse a recording file, which are as follow

  1. Read HDF File

  2. Stim loc

  3. Align Cycles

  4. Average Cycles/Select one

  5. Activation Time

  6. Activation & Repolarisation Time

  7. APD

  8. Extract EGM

  9. EGM Feature Extraction

  10. BAD Channels

  11. Feature Matrix

  12. Interpolation

  13. Conduction Velocity

5.4.3. 1. Read HDF File

#TODO

spkit.io.read_hdf

5.4.4. 2. Stim Localisation

#TODO

spkit.mea.get_stim_loc

5.4.5. 3. Alignment of Stim Cycles

#TODO

spkit.mea.align_cycles

5.4.6. 4. Averaging Cycles or Selecting one

#TODO

5.4.7. 5. Activation Time

#TODO

spkit.mea.activation_time_loc

5.4.8. 6. Repolarisation Time (optional)

#TODO

spkit.mea.activation_repol_time_loc

5.4.9. 7. APD (if RT is computed)

#TODO

apd_ms = rt_loc_ms-at_loc_ms

5.4.10. 8. Extracting EGM

#TODO

spkit.mea.extract_egm

5.4.11. 9. EGM Feature Extraction

#TODO

spkit.mea.egm_features

5.4.12. 10. Identifying BAD Channels/electrodes

#TODO

spkit.mea.find_bad_channels_idx

5.4.13. 11. Creating Feature Matrix

#TODO

spkit.mea.mea_feature_map

5.4.14. 12. Interpolation

#TODO

spkit.fill_nans_2d

5.4.15. 13. Conduction Velocity

#TODO

spkit.mea.compute_cv

5.4.16. Plots and Figures

#TODO

5.4.17. Extracting EGM

https://raw.githubusercontent.com/spkit/spkit.github.io/master/assets/images/docs_fig/mea_grid_egm_1.png

5.4.18. EGM Processing & Feature Extractions

https://raw.githubusercontent.com/spkit/spkit.github.io/master/assets/images/docs_fig/egm_processing_1.png

5.4.19. Conduction and Activation Map

https://raw.githubusercontent.com/spkit/spkit.github.io/master/assets/images/docs_fig/mea_act_cv_map_2.png https://raw.githubusercontent.com/spkit/spkit.github.io/master/assets/images/docs_fig/mea_act_cv_map_1.png