spkit.mea
.unarrange_mea_grid¶
- spkit.mea.unarrange_mea_grid(M, ch_labels)¶
- Reverse the operation of ‘arrange_mea_grid’
That is given Feature Matrix of MEA grid, arrange it in order of ch_labels
- Parameters:
- MMEA Grid Matrix
- ch_labels: chanel labels
- Returns:
- f: 1d-array
See also
Examples
>>> #sp.mea.unarrange_mea_grid >>> import numpy as np >>> import matplotlib.pyplot as plt >>> import spkit as sp >>> ch_labels = np.array([47, 48, 46, 45, 38, 37, 28, 36, 27, 17, 26, 16, 35, 25, 15, 14, 24, >>> 34, 13, 23, 12, 22, 33, 21, 32, 31, 44, 43, 41, 42, 52, 51, 53, 54, >>> 61, 62, 71, 63, 72, 82, 73, 83, 64, 74, 84, 85, 75, 65, 86, 76, 87, >>> 77, 66, 78, 67, 68, 55, 56, 58, 57]) >>> Ax = (sp.create_signal_2d(n=8,sg_winlen=5, sg_polyorder=1,seed=2)*30).round(1) >>> Ax[[0,0,7,7],[0,7,0,7]] = np.nan >>> print(Ax) [[ nan 2.5 1.9 0. 2. 0.7 3.1 nan] [ 5.9 5. 4. 2.2 2.5 1.4 3.4 5.5] [ 8.9 7.5 6.1 4.4 3.1 2. 3.8 5.5] [17.5 14. 10.5 7.5 5.4 3.7 6.4 9.1] [23.1 17.8 12.4 9.8 6.2 2.4 4.1 5.8] [14.2 13.8 13.4 14.3 13.2 9.1 8.3 7.5] [14.3 16.4 18.5 20.5 21.6 13.9 9.7 5.6] [ nan 19. 23.7 26.6 30. 18.7 11.2 nan]]
>>> F = sp.mea.unarrange_mea_grid(Ax,ch_labels=ch_labels) >>> print(F) [20.5 26.6 14.3 9.8 23.7 18.5 19. 13.4 16.4 14.3 13.8 14.2 12.4 17.8 23.1 17.5 14. 10.5 8.9 7.5 5.9 5. 6.1 2.5 4. 1.9 7.5 4.4 0. 2.2 2.5 2. 3.1 5.4 0.7 1.4 3.1 2. 3.4 5.5 3.8 5.5 3.7 6.4 9.1 5.8 4.1 2.4 7.5 8.3 5.6 9.7 9.1 11.2 13.9 18.7 6.2 13.2 30. 21.6]