spkit
.entropy_svd¶
- spkit.entropy_svd(x, order=3, delay=1, base=2, normalize=False)¶
Singular Value Decomposition Entropy \(H_{\Sigma}(X)\)
Singular Value Decomposition Entropy
- Parameters:
- x1d-array, shape (n,)
input signal
- orderint, default=3
Embedding dimension (order).
- delayint, default=1
Delay.
- base: scalar>0, deafult=2
base of log, 2, 10, ‘e’
- normalize: bool, default=False
if True, Hx is normalised
- Returns:
- H_svd: scalar,
Singular Value Decomposition Entropy
See also
entropy
Entropy
entropy_sample
Sample Entropy
entropy_approx
Approximate Entropy
dispersion_entropy
Dispersion Entropy
entropy_spectral
Spectral Entropy
entropy_permutation
Permutation Entropy
entropy_differential
Differential Entropy
References
wikipedia
Examples
>>> import numpy as np >>> import spkit as sp >>> t = np.linspace(0,2,200) >>> x1 = np.sin(2*np.pi*1*t) + 0.01*np.random.randn(len(t)) # less noisy >>> x2 = np.sin(2*np.pi*1*t) + 0.5*np.random.randn(len(t)) # very noisy >>> #Entropy SVD >>> H_x1 = sp.entropy_svd(x1,order=3, delay=1) >>> H_x2 = sp.entropy_svd(x2,order=3, delay=1) >>> print('Entropy SVD') >>> print(r'Entropy of x1: H_s(x1) = ',H_x1) >>> print(r'Entropy of x2: H_s(x2) = ',H_x2) Entropy SVD Entropy of x1: H_s(x1) = 0.34210072132884417 Entropy of x2: H_s(x2) = 1.394331263550738