Decision Trees with visualisations while buiding tree

Decision Trees with visualisation while building trees.

This example covers the use of

  1. Classification and

  2. Regression Tree

From *spkit* library with different verbosity mode while training and plotting resulting decision tree after training. We use two different datasets Iris and Breast Cancer for classification and Boston Housing price for Regression.

# Import libraries
import numpy as np
import matplotlib.pyplot as plt
import spkit
print('spkit version :', spkit.__version__)

# just to makesure same results
np.random.seed(11)

# import Classification and Regression Tree from spkit
from spkit.ml import ClassificationTree, RegressionTree

# import dataset and train-test split from sklearn or use your own dataset
from sklearn import datasets
from sklearn.model_selection import train_test_split
spkit version : 0.0.9.7

Classification Tree

# 1. Iris Dataset

# Loading and spliting for training and testing
data = datasets.load_iris()
X = data.data
y = data.target

feature_names = data.feature_names #Optional

Xt,Xs, yt, ys = train_test_split(X,y,test_size=0.3)

print('Shapes', X.shape,y.shape, Xt.shape, yt.shape, Xs.shape, ys.shape)

# Fitting a model (displaying the tree building) with different modes

# 1) verbose=0 (silence mode)

model = ClassificationTree()
model.fit(Xt,yt,verbose=0,feature_names=feature_names)


# 2) verbose=1 (progress bar)


model = ClassificationTree()
model.fit(Xt,yt,verbose=1,feature_names=feature_names)

# 3) verbose=2 (printing tree info)


model = ClassificationTree()
model.fit(Xt,yt,verbose=2,feature_names=feature_names)


# 4) verbose=3 (printing branches only)

model = ClassificationTree()
model.fit(Xt,yt,verbose=3,feature_names=feature_names)


# 5) verbose=4 (Plotting tree.. while building)


model = ClassificationTree()
model.fit(Xt,yt,verbose=4,feature_names=feature_names)


plt.figure(figsize=(10,6))
model.plotTree(show=True,scale=False)


plt.figure(figsize=(8,6))
model.plotTree(DiffBranchColor=False)


# Predicting

ytp = model.predict(Xt)
ysp = model.predict(Xs)


ytpr = model.predict_proba(Xt)[:,1]
yspr = model.predict_proba(Xs)[:,1]

print('Depth of trained Tree ', model.getTreeDepth())
print('Accuracy')
print('- Training : ',np.mean(ytp==yt))
print('- Testing  : ',np.mean(ysp==ys))
print('Logloss')
Trloss = -np.mean(yt*np.log(ytpr+1e-10)+(1-yt)*np.log(1-ytpr+1e-10))
Tsloss = -np.mean(ys*np.log(yspr+1e-10)+(1-ys)*np.log(1-yspr+1e-10))
print('- Training : ',Trloss)
print('- Testing  : ',Tsloss)


# Iris data with smaller tree


model = ClassificationTree(max_depth=3)
model.fit(Xt,yt,verbose=1,feature_names=feature_names)
plt.figure(figsize=(5,5))
model.plotTree(show=True,DiffBranchColor=True)
ytp = model.predict(Xt)
ysp = model.predict(Xs)

ytpr = model.predict_proba(Xt)[:,1]
yspr = model.predict_proba(Xs)[:,1]

print('Depth of trained Tree ', model.getTreeDepth())
print('Accuracy')
print('- Training : ',np.mean(ytp==yt))
print('- Testing  : ',np.mean(ysp==ys))
print('Logloss')
Trloss = -np.mean(yt*np.log(ytpr+1e-10)+(1-yt)*np.log(1-ytpr+1e-10))
Tsloss = -np.mean(ys*np.log(yspr+1e-10)+(1-ys)*np.log(1-yspr+1e-10))
print('- Training : ',Trloss)
print('- Testing  : ',Tsloss)
  • plot ml decision tree visualisation
  • Decision Tree
  • Decision Tree
  • Decision Tree
Shapes (150, 4) (150,) (105, 4) (105,) (45, 4) (45,)
Number of features:: 4
Number of samples :: 105
---------------------------------------
|Building the tree.....................
|subtrees::|25%|----->...............|\
|subtrees::|50%|---------->..........|-
|subtrees::|75%|--------------->.....|/
|subtrees::|100%|-------------------->||
|subtrees::|25%|----->...............|\
|subtrees::|50%|---------->..........|-
|subtrees::|75%|--------------->.....|/
|subtrees::|100%|-------------------->||
|subtrees::|25%|----->...............|\
|subtrees::|50%|---------->..........|-
|subtrees::|75%|--------------->.....|/
|subtrees::|100%|-------------------->||
|subtrees::|25%|----->...............|\
|subtrees::|50%|---------->..........|-
|subtrees::|75%|--------------->.....|/
|subtrees::|100%|-------------------->||
|subtrees::|25%|----->...............|\
|subtrees::|50%|---------->..........|-
|subtrees::|75%|--------------->.....|/
|subtrees::|100%|-------------------->||
|subtrees::|25%|----->...............|\
|subtrees::|50%|---------->..........|-
|subtrees::|75%|--------------->.....|/
|subtrees::|100%|-------------------->||
|subtrees::|25%|----->...............|\
|subtrees::|50%|---------->..........|-
|subtrees::|75%|--------------->.....|/
|subtrees::|100%|-------------------->||
|subtrees::|25%|----->...............|\
|subtrees::|50%|---------->..........|-
|subtrees::|75%|--------------->.....|/
|subtrees::|100%|-------------------->||
|subtrees::|25%|----->...............|\
|subtrees::|50%|---------->..........|-
|subtrees::|75%|--------------->.....|/
|subtrees::|100%|-------------------->||
|
|.........................tree is buit!
---------------------------------------
Number of features:: 4
Number of samples :: 105
---------------------------------------
|Building the tree.....................
|-Feature::1_sepal length (cm) Gain::0.01 thr::_Depth = 1
|-Feature::1_sepal length (cm) Gain::0.06 thr::_Depth = 1
|-Feature::1_sepal length (cm) Gain::0.09 thr::_Depth = 1
|-Feature::1_sepal length (cm) Gain::0.13 thr::_Depth = 1
|-Feature::1_sepal length (cm) Gain::0.21 thr::_Depth = 1
|-Feature::1_sepal length (cm) Gain::0.34 thr::_Depth = 1
|-Feature::1_sepal length (cm) Gain::0.4 thr::_Depth = 1
|-Feature::1_sepal length (cm) Gain::0.43 thr::_Depth = 1
|-Feature::1_sepal length (cm) Gain::0.57 thr::_Depth = 1
|-Feature::3_petal length (cm) Gain::0.64 thr::_Depth = 1
|-Feature::3_petal length (cm) Gain::0.8 thr::_Depth = 1
|-Feature::3_petal length (cm) Gain::0.93 thr::_Depth = 1
|
|->False branch (<<<)..
|->{Leaf Node:: value: 0 }_Depth =2

|
|->True branch (>>>)..
|--Feature::1_sepal length (cm) Gain::0.0 thr::_Depth = 2
|--Feature::1_sepal length (cm) Gain::0.0 thr::_Depth = 2
|--Feature::1_sepal length (cm) Gain::0.01 thr::_Depth = 2
|--Feature::1_sepal length (cm) Gain::0.02 thr::_Depth = 2
|--Feature::1_sepal length (cm) Gain::0.08 thr::_Depth = 2
|--Feature::1_sepal length (cm) Gain::0.09 thr::_Depth = 2
|--Feature::1_sepal length (cm) Gain::0.17 thr::_Depth = 2
|--Feature::1_sepal length (cm) Gain::0.2 thr::_Depth = 2
|--Feature::3_petal length (cm) Gain::0.21 thr::_Depth = 2
|--Feature::3_petal length (cm) Gain::0.26 thr::_Depth = 2
|--Feature::3_petal length (cm) Gain::0.35 thr::_Depth = 2
|--Feature::3_petal length (cm) Gain::0.4 thr::_Depth = 2
|--Feature::3_petal length (cm) Gain::0.45 thr::_Depth = 2
|--Feature::3_petal length (cm) Gain::0.46 thr::_Depth = 2
|--Feature::3_petal length (cm) Gain::0.56 thr::_Depth = 2
|--Feature::3_petal length (cm) Gain::0.69 thr::_Depth = 2
|--Feature::4_petal width (cm) Gain::0.81 thr::_Depth = 2
|
|-->False branch (<<<)..
|--Feature::1_sepal length (cm) Gain::0.0 thr::_Depth = 3
|--Feature::1_sepal length (cm) Gain::0.0 thr::_Depth = 3
|--Feature::1_sepal length (cm) Gain::0.0 thr::_Depth = 3
|--Feature::1_sepal length (cm) Gain::0.0 thr::_Depth = 3
|--Feature::1_sepal length (cm) Gain::0.01 thr::_Depth = 3
|--Feature::1_sepal length (cm) Gain::0.02 thr::_Depth = 3
|--Feature::1_sepal length (cm) Gain::0.03 thr::_Depth = 3
|--Feature::1_sepal length (cm) Gain::0.03 thr::_Depth = 3
|--Feature::1_sepal length (cm) Gain::0.04 thr::_Depth = 3
|--Feature::1_sepal length (cm) Gain::0.04 thr::_Depth = 3
|--Feature::2_sepal width (cm) Gain::0.04 thr::_Depth = 3
|--Feature::3_petal length (cm) Gain::0.05 thr::_Depth = 3
|--Feature::3_petal length (cm) Gain::0.06 thr::_Depth = 3
|--Feature::3_petal length (cm) Gain::0.07 thr::_Depth = 3
|--Feature::3_petal length (cm) Gain::0.11 thr::_Depth = 3
|--Feature::3_petal length (cm) Gain::0.13 thr::_Depth = 3
|--Feature::3_petal length (cm) Gain::0.18 thr::_Depth = 3
|
|-->False branch (<<<)..
|-->{Leaf Node:: value: 1 }_Depth =4

|
|-->True branch (>>>)..
|--->{Leaf Node:: value: 2 }_Depth =4

|
|-->True branch (>>>)..
|---Feature::1_sepal length (cm) Gain::0.0 thr::_Depth = 3
|---Feature::1_sepal length (cm) Gain::0.0 thr::_Depth = 3
|---Feature::1_sepal length (cm) Gain::0.01 thr::_Depth = 3
|---Feature::1_sepal length (cm) Gain::0.09 thr::_Depth = 3
|---Feature::3_petal length (cm) Gain::0.1 thr::_Depth = 3
|
|--->False branch (<<<)..
|---Feature::1_sepal length (cm) Gain::0.12 thr::_Depth = 4
|---Feature::1_sepal length (cm) Gain::0.31 thr::_Depth = 4
|---Feature::2_sepal width (cm) Gain::0.81 thr::_Depth = 4
|
|--->False branch (<<<)..
|--->{Leaf Node:: value: 2 }_Depth =5

|
|--->True branch (>>>)..
|---->{Leaf Node:: value: 1 }_Depth =5

|
|--->True branch (>>>)..
|---->{Leaf Node:: value: 2 }_Depth =4

|
|.........................tree is buit!
---------------------------------------
Number of features:: 4
Number of samples :: 105
---------------------------------------
|Building the tree.....................
None 1 |
True 2 | T
True 3 | TT
True 4 | TTT
False 4 | TTTF
True 5 | TTTFT
False 5 | TTTFF
False 3 | TTF
True 4 | TTFT
False 4 | TTFF
False 2 | TF
|
|.........................tree is buit!
---------------------------------------
Number of features:: 4
Number of samples :: 105
---------------------------------------
|Building the tree.....................
|
|.........................tree is buit!
---------------------------------------
Depth of trained Tree  4
Accuracy
- Training :  1.0
- Testing  :  0.9111111111111111
Logloss
- Training :  14.473392013068288
- Testing  :  15.350567286593632
Number of features:: 4
Number of samples :: 105
---------------------------------------
|Building the tree.....................
|subtrees::|25%|----->...............|\
|subtrees::|50%|---------->..........|-
|subtrees::|75%|--------------->.....|/
|subtrees::|100%|-------------------->||
|subtrees::|25%|----->...............|\
|subtrees::|50%|---------->..........|-
|subtrees::|75%|--------------->.....|/
|subtrees::|100%|-------------------->||
|subtrees::|25%|----->...............|\
|subtrees::|50%|---------->..........|-
|subtrees::|75%|--------------->.....|/
|subtrees::|100%|-------------------->||
|subtrees::|25%|----->...............|\
|subtrees::|50%|---------->..........|-
|subtrees::|75%|--------------->.....|/
|subtrees::|100%|-------------------->||
|subtrees::|25%|----->...............|\
|subtrees::|50%|---------->..........|-
|subtrees::|75%|--------------->.....|/
|subtrees::|100%|-------------------->||
|
|.........................tree is buit!
---------------------------------------
Depth of trained Tree  3
Accuracy
- Training :  0.9904761904761905
- Testing  :  0.8666666666666667
Logloss
- Training :  2.5937142862825335
- Testing  :  1.6081773385894438

Breast Cancer data

data = datasets.load_breast_cancer()
X = data.data
y = data.target

feature_names = data.feature_names #Optional

Xt,Xs, yt, ys = train_test_split(X,y,test_size=0.3)

print(X.shape,y.shape, Xt.shape, yt.shape, Xs.shape, ys.shape)


# Fitting model with displaying the details of tree in process (verbose=4)

# **While building tree, To first choose True branch and then False set randomBranch=False**


model = ClassificationTree()
model.fit(Xt,yt,verbose=4,feature_names=feature_names,randomBranch=False)
plt.show()


# **To randomly selevting True or False branch set randomBranch=True**

model = ClassificationTree()
model.fit(Xt,yt,verbose=4,feature_names=feature_names,randomBranch=True)
plt.show()


#  Resulting tree

plt.figure(figsize=(10,6))
model.plotTree(show=True,DiffBranchColor=True,scale=False)
plt.show()


#  Fitting model with displaying the progress only (verbose=1)


# %matplotlib inline
model = ClassificationTree()
model.fit(Xt,yt,verbose=1,feature_names=feature_names)

plt.figure(figsize=(6,6))
model.plotTree()
plt.show()

# Predicting

ytp = model.predict(Xt)
ysp = model.predict(Xs)

ytpr = model.predict_proba(Xt)[:,1]
yspr = model.predict_proba(Xs)[:,1]

print('Depth of trained Tree ', model.getTreeDepth())
print('Accuracy')
print('- Training : ',np.mean(ytp==yt))
print('- Testing  : ',np.mean(ysp==ys))
print('Logloss')
Trloss = -np.mean(yt*np.log(ytpr+1e-10)+(1-yt)*np.log(1-ytpr+1e-10))
Tsloss = -np.mean(ys*np.log(yspr+1e-10)+(1-ys)*np.log(1-yspr+1e-10))
print('- Training : ',Trloss)
print('- Testing  : ',Tsloss)
  • plot ml decision tree visualisation
  • plot ml decision tree visualisation
  • Decision Tree
  • Decision Tree
(569, 30) (569,) (398, 30) (398,) (171, 30) (171,)
Number of features:: 30
Number of samples :: 398
---------------------------------------
|Building the tree.....................
|
|.........................tree is buit!
---------------------------------------
Number of features:: 30
Number of samples :: 398
---------------------------------------
|Building the tree.....................
|
|.........................tree is buit!
---------------------------------------
Number of features:: 30
Number of samples :: 398
---------------------------------------
|Building the tree.....................
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|subtrees::|3%|>....................|\
|subtrees::|6%|->...................|-
|subtrees::|10%|-->..................|/
|subtrees::|13%|-->..................||
|subtrees::|16%|--->.................|\
|subtrees::|20%|---->................|-
|subtrees::|23%|---->................|/
|subtrees::|26%|----->...............||
|subtrees::|30%|------>..............|\
|subtrees::|33%|------>..............|-
|subtrees::|36%|------->.............|/
|subtrees::|40%|-------->............||
|subtrees::|43%|-------->............|\
|subtrees::|46%|--------->...........|-
|subtrees::|50%|---------->..........|/
|subtrees::|53%|---------->..........||
|subtrees::|56%|----------->.........|\
|subtrees::|60%|------------>........|-
|subtrees::|63%|------------>........|/
|subtrees::|66%|------------->.......||
|subtrees::|70%|-------------->......|\
|subtrees::|73%|-------------->......|-
|subtrees::|76%|--------------->.....|/
|subtrees::|80%|---------------->....||
|subtrees::|83%|---------------->....|\
|subtrees::|86%|----------------->...|-
|subtrees::|90%|------------------>..|/
|subtrees::|93%|------------------>..||
|subtrees::|96%|------------------->.|\
|subtrees::|100%|-------------------->|-
|
|.........................tree is buit!
---------------------------------------
Depth of trained Tree  6
Accuracy
- Training :  1.0
- Testing  :  0.9298245614035088
Logloss
- Training :  -1.000000082690371e-10
- Testing  :  1.6158491879730155

Total running time of the script: (0 minutes 5.993 seconds)

Related examples

Decision Trees with shrinking capability - Classification example

Decision Trees with shrinking capability - Classification example

Decision Trees with shrinking capability - Regression example

Decision Trees with shrinking capability - Regression example

Logistic Regression - Visualisation

Logistic Regression - Visualisation

Naive Bayes classifier - Visualisation

Naive Bayes classifier - Visualisation

Decision Trees without converting Catogorical Features

Decision Trees without converting Catogorical Features

Gallery generated by Sphinx-Gallery