spkit.data.spiral¶
- spkit.data.spiral(N=[100, 100], s=0.5, wrappings='random', m='random', return_para=False, **kwargs)¶
- Generate a 2-class dataset of spirals - Generating 2-classes of spirals - Parameters:
- N: list or two int, default =[100,100]
- vector that fix the number of samples from each class 
- example N = [100,100], 100 samples for each class 
 
- s: scalar, default=0.5
- standard deviation of the gaussian noise. 
 
- wrappings: scalar, str, default=’random’
- number of wrappings of each spiral. 
 
- m: scalar, str, default=’random’
- multiplier m of x * sin(m * x) for the second spiral. - New in version 0.0.9.7: Added to return parameters 
 
- return_para: bool, default=False
- if True, return the parameters 
 
 
- Returns:
- X: 2d-array
- data matrix with a sample for each row 
- shape (n, 2) - Changed in version 0.0.9.7: shape is changed to (n, 2) 
 
- y: 1d-array
- vector with the labels - Changed in version 0.0.9.7: shape is changed to (n, ) 
 
- (s, wrappings, m): parameters
- if return_para=True 
 
 
 - See also - Examples - #sp.data.spiral import numpy as np import matplotlib.pyplot as plt import spkit as sp X, y = sp.data.spiral(N =[100, 100],s=0.1,wrappings=2,m=3) plt.figure() plt.plot(X[y==0,0],X[y==0,1],'o') plt.plot(X[y==1,0],X[y==1,1],'o') plt.xlabel('x1') plt.ylabel('x2') plt.title('Spiral Data') plt.show()   




