spkit.data.mclass_gauss¶
- spkit.data.mclass_gauss(N=100, nClasses=2, var=0.1, ShowPlot=False, return_para=False)¶
- Generate Multi-class gaussian samples - Parameters:
- N: int, deafult=100
- number of samples from each class 
- example N = 100, 100 samples for each class 
 
- nClasses: int, default=0.5
- number of classes 
 
- var: scalar, str, default=0.1
- variance - noise 
 
- ShowPlot: bool, default=False
- Plot the data, - New in version 0.0.9.7: Added to return parameters 
 
- return_para: bool, default=False
- if True, return the parameters 
 
 
- Returns:
- X: 2d-array
- data matrix with a sample for each row 
- shape (n, 2) - Changed in version 0.0.9.7: shape is changed to (n, 2) 
 
- y: 1d-array
- vector with the labels - Changed in version 0.0.9.7: shape is changed to (n, ) 
 
 
 - See also - Examples - #sp.data.mclass_gauss import numpy as np import matplotlib.pyplot as plt import spkit as sp np.random.seed(4) X, y = sp.data.mclass_gauss(N=100,nClasses=3,var=0.3) np.random.seed(None) plt.figure() plt.plot(X[y==0,0],X[y==0,1],'o') plt.plot(X[y==1,0],X[y==1,1],'o') plt.plot(X[y==2,0],X[y==2,1],'o') plt.xlabel('x1') plt.ylabel('x2') plt.title('Multi-Class Gaussian Data') plt.show()   




