spkit.data.gaussian¶
- spkit.data.gaussian(N=[100, 100], ndist=3, means='random', sigmas='random', return_para=False, **kwargs)¶
- Generate a 2-class dataset from a mixture of gaussians - Sample a dataset from a mixture of gaussians - Parameters:
- N: list or two int, default =[100,100]
- vector that fix the number of samples from each class 
- example N = [100,100], 100 samples for each class 
 
- ndist: scalar, default=3
- number of gaussian for each class. Default is 3 
 
- means: array, shape (2*ndist X 2), default=’random’
- vector of size(2*ndist X 2) with the means of each gaussian. 
 
- sigmas: array , default=’random’
- A sequence of covariance matrices of size (2*ndist, 2) - New in version 0.0.9.7: Added to return parameters 
 
- return_para: bool, default=False
- if True, return the parameters 
 
 
- Returns:
- X: 2d-array
- data matrix with a sample for each row 
- shape (n, 2) - Changed in version 0.0.9.7: shape is changed to (n, 2) 
 
- y: 1d-array
- vector with the labels - Changed in version 0.0.9.7: shape is changed to (n, ) 
 
- (ndist, means, sigmas): parameters
- if return_para is True 
 
 
 - See also - Examples - #sp.data.gaussian import numpy as np import matplotlib.pyplot as plt import spkit as sp np.random.seed(3) X, y = sp.data.gaussian(N =[100, 100],ndist=3, means='random', sigmas='random') np.random.seed(None) plt.figure() plt.plot(X[y==0,0],X[y==0,1],'o') plt.plot(X[y==1,0],X[y==1,1],'o') plt.xlabel('x1') plt.ylabel('x2') plt.title('Gaussian Data') plt.show()   




