spkit.data
.eeg_sample_artifact¶
- spkit.data.eeg_sample_artifact(fname='EEG16sec_artifact.pkl')¶
Load 14 channel EEG sample recording of 16 second duration with artifacts and processed.
Recorded sample is a part of PhyAAt Dataset[1]
- Returns:
- datadictionary contants signals with following keys
- ‘X_raw’Raw EEG signal
‘X_fil’ : Raw EEG Filtered with high pass filter (0.5Hz) ‘X_ica’ : Aftifact removed using ICA ‘X_atar_soft’ : artifact removed using ATAR soft thresholding mode ‘X_atar_elim’ : artifact removed using ATAR elimination mode
‘fs’ : sampling frequency ‘info’ : information ‘ch_names’ : channel names
See also
eda_sample
Electrodermal activity (EDA)
gsr_sample
Galvanic Skin Response (GSR)
eeg_sample_14ch
Electroencephalography (EEG) - 14-channel
eeg_sample_1ch
Electroencephalography (EEG) - 1-channel
ecg_sample_12leads
Electrocardiogram (ECG) - 12-leads
ecg_sample
Electrocardiogram (ECG) - 1-lead
optical_sample
Optical Mapped Signal
ppg_sample
Photoplethysmogram (PPG)
egm_sample
Electrogram (EGM)
References
[1] PhyAAt Dataset - https://phyaat.github.io/
Examples
import numpy as np import matplotlib.pyplot as plt import spkit as sp data = sp.data.eeg_sample_artifact() X = data['X_raw'] fs = data['fs'] ch_names = data['ch_names'] t = np.arange(X.shape[0])/fs sep = 50 plt.figure(figsize=(10,6)) plt.plot(t,X + np.arange(X.shape[1])*sep) plt.xlim([t[0],t[-1]]) plt.xlabel('time (s)') plt.yticks(np.arange(X.shape[1])*sep,ch_names) plt.grid() plt.show()