spkit
.denorm_kernel¶
- spkit.denorm_kernel(kernel, mode=None, keep_scale=False, esp=1e-05)¶
De-normalise 1d/2d Kernel
De-normalise 1d or 2d Kernel
Often we use normalised kernels for processing (e.g. convolution, filtering), However, in some cases, we like to have un-normalised kernel, such as
conv1d_nan
andconv2d_nan
.De-normalising kernel will scale the weights of the kernel, keeping the relative differences.
- Parameters:
- kernel: 1d-array, 2d-array
kernel, example : kernel = [1/3, 1/3, 1/3]
- Returns:
- nkernel: same size as input
denprmised kernel, nkernel = [1, 1, 1]
See also
Notes
#TODO
Examples
>>> #sp.denorm_kernel >>> import numpy as np >>> import matplotlib.pyplot as plt >>> import spkit as sp >>> kernel = np.ones([3,3])/9 >>> kernel >>> print(kernel)
array([[0.11111111, 0.11111111, 0.11111111], [0.11111111, 0.11111111, 0.11111111], [0.11111111, 0.11111111, 0.11111111]])
>>> denorm_kernel(kernel)
array([[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]])