Note
Go to the end to download the full example code or to run this example in your browser via JupyterLite or Binder
Ramanujan Filter Banks - Demos¶
# Ramanujan Filter Banks
Demos
import numpy as np
import matplotlib.pyplot as plt
import spkit as sp
print('spkit version :', sp.__version__)
spkit version : 0.0.9.7
Example demo 1¶
sp.RFB_example_1(period=10, SNR=0, seed=10)
top 10 periods: [10 5 11 18 17 16 15 14 13 12]
Example demo 2¶
sp.RFB_example_2(periods=[3, 7, 11], signal_length=100, SNR=10, seed=15)
Top 10 periods :
- using L1 regularisation with penalty : [ 3 7 11 2 6 5 10 15 4 8]
- using L1 regularisation with no penalty : [ 3 2 89 65 61 67 52 71 70 79]
- using L2 regularisation with penalty : [ 3 7 2 6 5 11 4 8 10 13]
- using no regularisation no penalty : [ 3 11 7 28 50 90 34 26 27 29]
Example demo 2 with diff periods¶
sp.RFB_example_2(periods=[3,7,14], signal_length=100, SNR=10, seed=15)
Top 10 periods :
- using L1 regularisation with penalty : [ 3 2 6 7 10 5 11 13 15 16]
- using L1 regularisation with no penalty : [ 2 3 89 65 67 68 64 61 79 87]
- using L2 regularisation with penalty : [ 3 2 6 7 5 11 10 13 9 8]
- using no regularisation no penalty : [ 7 3 14 90 34 26 27 28 29 30]
Total running time of the script: (0 minutes 5.550 seconds)
Related examples
Release Highlights for spkit 0.0.9.6
Release Highlights for spkit 0.0.9.6
Ramanujan Filter Banks Example
Ramanujan Filter Banks Example
Ramanujan Dictionary - with sparse penalty
Ramanujan Dictionary - with sparse penalty
Auditory Attention: Plot Group Data
Auditory Attention: Plot Group Data
EEG Artifact removal using ICA
EEG Artifact removal using ICA