spkit
.gaussian_kernel¶
- spkit.gaussian_kernel(window_length, sigma_scale=2.7, sigma=None)¶
Gaussian Kernel
Gaussian Kernel
Generating Gaussian kernel of given window length and sigma.
sigma = window_length / 6
- Parameters:
- window_length: int, length of window
- sigma_scale: float, to control the width and spread of gaussian curve
- Returns:
- ker: gaussian kernel of given window
See also
friedrichs_mollifier_kernel
Kurt Otto Friedrichs kernel
Examples
#sp.gaussian_kernel import numpy as np import matplotlib.pyplot as plt import spkit as sp x,fs = sp.data.ppg_sample(sample=1) x = x[:int(fs*5)] x = x - x.mean() t = np.arange(len(x))/fs kernel1 = sp.gaussian_kernel(window_length=101,sigma_scale=10) kernel2 = sp.friedrichs_mollifier_kernel(window_size=101,s=1,p=1) kernel3 = (kernel1 - kernel2)/2 y1 = sp.filter_with_kernel(x.copy(),kernel=kernel1) y2 = sp.filter_with_kernel(x.copy(),kernel=kernel2) y3 = sp.filter_with_kernel(x.copy(),kernel=kernel3) plt.figure(figsize=(12,5)) plt.subplot(212) plt.plot(t,x,label='x: signal') plt.plot(t,y1,label='y1: kernel1') plt.plot(t,y2,label='y2: kernel2') plt.plot(t,y3,label='y3: kernel3') plt.xlim([t[0],t[-1]]) plt.xlabel('time (s)') plt.ylabel('PPG Signal') plt.grid() plt.legend(bbox_to_anchor=(1,1)) plt.title('filtering with kernels') plt.subplot(231) plt.plot(kernel1,label='kernel1') plt.plot(kernel2,label='kernel2') plt.plot(kernel3,label='kernel3') plt.title('Kernels') plt.grid() plt.tight_layout() plt.show()