spkit.ffrft¶
- spkit.ffrft(x, alpha)¶
- Fast Fractional Fourier Transform - Fast Fractional Fourier Transform - perfect reconstruction with iffrft 
 - Parameters:
- x: real signal
- alpha: value
 
- Returns:
- Y: complex signal
 
 - See also - Notes - FRFT - frftFractional Fourier Transform, is classic and more accepted approach. Compared to FFRFT,- ffrft
 - References - wikipedia - 
 - Examples - #sp.ffrft import numpy as np import matplotlib.pyplot as plt import spkit as sp t = np.linspace(0,2,500) x = np.cos(2*np.pi*5*t) xf = sp.ffrft(x,alpha=0.5) plt.figure(figsize=(10,5)) plt.subplot(211) plt.plot(t,x,label='x: input signal') plt.xlim([t[0],t[-1]]) plt.xlabel('time (s)') plt.ylabel('x') plt.legend(loc='upper right') plt.subplot(212) plt.plot(t,xf.real,label='xf.real',alpha=0.9) plt.plot(t,xf.imag,label='xf.imag',alpha=0.9) plt.plot(t,np.abs(xf),label='|xf|',alpha=0.9) plt.xlim([t[0],t[-1]]) plt.ylabel(r'xf: FFRFT(x) $\alpha=0.5$') plt.legend(loc='upper right') plt.tight_layout() plt.show()   




