spkit
.ffrft¶
- spkit.ffrft(x, alpha)¶
Fast Fractional Fourier Transform
Fast Fractional Fourier Transform
perfect reconstruction with iffrft
- Parameters:
- x: real signal
- alpha: value
- Returns:
- Y: complex signal
See also
Notes
FRFT
frft
Fractional Fourier Transform, is classic and more accepted approach. Compared to FFRFT,ffrft
References
wikipedia -
Examples
#sp.ffrft import numpy as np import matplotlib.pyplot as plt import spkit as sp t = np.linspace(0,2,500) x = np.cos(2*np.pi*5*t) xf = sp.ffrft(x,alpha=0.5) plt.figure(figsize=(10,5)) plt.subplot(211) plt.plot(t,x,label='x: input signal') plt.xlim([t[0],t[-1]]) plt.xlabel('time (s)') plt.ylabel('x') plt.legend(loc='upper right') plt.subplot(212) plt.plot(t,xf.real,label='xf.real',alpha=0.9) plt.plot(t,xf.imag,label='xf.imag',alpha=0.9) plt.plot(t,np.abs(xf),label='|xf|',alpha=0.9) plt.xlim([t[0],t[-1]]) plt.ylabel(r'xf: FFRFT(x) $\alpha=0.5$') plt.legend(loc='upper right') plt.tight_layout() plt.show()