spkit
.wpa_plot¶
- spkit.wpa_plot(x, winsize=128, overlap=64, verticle_stacked=True, wv='db3', mode='symmetric', maxlevel=None, inpterp='sinc', fs=128, plot=True, pad=True, verbose=0, plottype='abs', figsize=(15, 8))¶
WPA Window-wise Plot
Wavelet Packet Decomposition - temporal - Plot
- Parameters:
- x: 1d signal array
- wvwavelet type, default = ‘db3’
- winsize: int, default=128
window size, samples at the end will be discarded, if len(x)%overlap is not eqaul to 0, to avoid, pad the signal
- overlap: int, default=None,
if None, overlap= winsize//2
shift of window
- mode: {‘symmetric’, ..}, default=’symmetric’
- maxlevel: int, or None, default=None
maximum levels of decomposition will result in 2**maxlevel packets
- verticle_stacked: bool, default=True
if True, coefficients are vertically stacked - good for temporal alignment
- pad: bool, default=False,
if True, signal will be padded with last value to make len(x)%overlap==0
- verbose: bool, deault=False
Verbosity mode
- plottype: {‘abs’,’abs_log’,’abs_log_p1’,’abs_log10’,’abs_log10_p1’}
used to plot Wavelet coefficients
- figsize: figure size
- inpterp: interpolation type
- Returns:
- WK_seq: 2D array, (N,K),
N = 2**maxlevel, number of packets
K, number of coefficients in each packet
See also
Notes
#TODO
References
Examples
#sp.wpa_plot import numpy as np import matplotlib.pyplot as plt import spkit as sp x,fs,lead_names = sp.data.ecg_sample_12leads(sample=2) x = x[:int(fs*5),5] x = sp.filterDC_sGolay(x, window_length=fs//3+1) t = np.arange(len(x))/fs WK = sp.wpa_plot(x,wv='db3',winsize=512,overlap=256,mode='symmetric',maxlevel=3,plottype='abs_log_p1', verticle_stacked=True,pad=False,figsize=(10,6))