spkit
.entropy_granger_causality¶
- spkit.entropy_granger_causality(X, Y, present_first=True, normalize=False)¶
Granger Causality based on Differential Entropy \(GC_{X->Y}, GC_{Y->X}, GC_{X.Y}\)
Granger Causality based on Differential Entropy
\(GC_{XY} (X->Y)\) : \(H(Y_{i+1}|Y_i) - H(Y_{i+1}|X_i,Y_i)\)
\(GC_{YX} (Y->X)\) : \(H(X_{i+1}|X_i) - H(X_{i+1}|X_i,Y_i)\)
\(GC_{XdY} (X.Y)\) : \(H(Y_{i+1}|X_i,Y_i) + H(X_{i+1}|X_i,Y_i) - H(X_{i+1},Y_{i+1}|X_i,Y_i)\)
- if normalize True
\(GC_{XY} = GC_{XY}/(I(Y_{i+1}; Y_i) + GC_{XY})\)
\(GC_{YX} = GC_{YX}/(I(X_{i+1}; X_i) + GC_{YX})\)
- Using:
\(H(Y_{i+1}|Y_i) = H(Y_{i+1}, Y_i) - H(Y_i)\)
\(H(X_{i+1}|X_i) = H(X_{i+1}, X_i) - H(X_i)\)
\(H(Y_{i+1}|X_i,Y_i) = H(Y_{i+1},X_i,Y_i) - H(X_i,Y_i)\)
\(H(X_{i+1}|X_i,Y_i) = H(X_{i+1},X_i,Y_i) - H(X_i,Y_i)\)
\(H(X_{i+1},Y_{i+1}|X_i,Y_i) = H(X_{i+1},Y_{i+1},X_i,Y_i) - H(X_i,Y_i)\)
\(I(X_{i+1}; X_i) = H(X_{i+1}) - H(X_{i+1} | X_i)\)
\(I(Y_{i+1}; Y_i) = H(Y_{i+1}) - H(Y_{i+1} | Y_i)\)
- Parameters:
- X: 2d-array,
multi-dimentional signal space, where each column (axis=1) are the delayed signals
- Y: 2d-array,
multi-dimentional signal space, where each column (axis=1) are the delayed signals
- normalize: bool, default=False
if True, GC is normalised
- present_first: bool, default=True
if True, X[:,0] is present, and X[:,1:] is past, in incresing order
if True, X[:,-1] is present, and X[:,:-1] is past
- Returns:
- gc_xy: scaler
Granger Causality from x to y
- gc_yx: scaler
Granger Causality from y to x
- gc_xdy: scaler
Granger Causality (x y)
See also
transfer_entropy
Transfer Entropy
transfer_entropy_cond
Conditional Transfer Entropy
partial_transfer_entropy
Partial Transfer Entropy
References
wikipedia
Examples
#sp.entropy_granger_causality import numpy as np import matplotlib.pyplot as plt import spkit as sp X, fs, ch_names = sp.data.eeg_sample_14ch() X = X - X.mean(1)[:, None] # Example 1 X1 = sp.signal_delayed_space(X[:,0].copy(),emb_dim=5,delay=2) Y1 = sp.signal_delayed_space(X[:,2].copy(),emb_dim=5,delay=2) Z1 = sp.signal_delayed_space(X[:,4].copy(),emb_dim=5,delay=2) Y2 = sp.add_noise(Y1,snr_db=0) gc_x1y1, gc_y1x1,gc_x1dy1 = sp.entropy_granger_causality(X1,Y1) gc_x1y2, gc_y2x1,gc_x1dy2 = sp.entropy_granger_causality(X1,Y2) print('Granger Causality : X1,Y1') print(f'- GC(X1->Y1) = {gc_x1y1}') print(f'- GC(Y1->X1) = {gc_y1x1}') print(f'- GC(X1,Y1) = {gc_x1dy1}') print('-'*10) print('Granger Causality : X1,Y2') print(f'- GC(X1->Y2) = {gc_x1y2}') print(f'- GC(Y2->X1) = {gc_y2x1}') print(f'- GC(X1,Y2) = {gc_x1dy2}')