spkit
.entropy_diff_cond¶
- spkit.entropy_diff_cond(X, Y, present_first=True)¶
Conditional Entropy \(H_{\partial}(X_{i+1}|X_i,Y_i)\)
Conditional Entropy
Information of \(X(i+1)\) given \(X(i)\) and \(Y(i)\)
\[H_{\partial}(X_{i+1}|X_i,Y_i) = H(X_{i+1},X_i,Y_i) - H(X_i,Y_i)\]- Parameters:
- X: 2d-array,
multi-dimentional signal space, where each column (axis=1) are the delayed signals
- Y: 2d-array,
multi-dimentional signal space, where each column (axis=1) are the delayed signals
- present_first: bool, default=True
if True, X[:,0] is present, and X[:,1:] is past, in incresing order
if True, X[:,-1] is present, and X[:,:-1] is past
- Returns:
- H_x1y: scaler
Conditional Entropy
See also
entropy_diff_cond_self
Self-Conditional Entropy
Examples
#sp.entropy_diff_cond import numpy as np import matplotlib.pyplot as plt import spkit as sp X, fs, ch_names = sp.data.eeg_sample_14ch() X = X - X.mean(1)[:, None] X1 = sp.signal_delayed_space(X[:,0].copy(),emb_dim=5,delay=2) Y1 = sp.signal_delayed_space(X[:,2].copy(),emb_dim=5,delay=2) Y2 = sp.add_noise(Y1,snr_db=0) H_xy1 = sp.entropy_diff_cond(X1,Y1,present_first=True) H_xy2 = sp.entropy_diff_cond(X1,Y2,present_first=True) H_y1x = sp.entropy_diff_cond(Y1,X1,present_first=True) H_y2x = sp.entropy_diff_cond(Y2,X1,present_first=True) print('Conditional Entropy') print(f'- H(X1|Y1) = {H_xy1}') print(f'- H(X1|Y2) = {H_xy2}') print(f'- H(Y1|X1) = {H_y1x}') print(f'- H(Y2|X1) = {H_y2x}')