spkit
.PCA¶
- class spkit.PCA(n_components=None, apply_whitening=True, tol=1e-05)¶
Principle Component Analysis
TO BE IMPROVED - Not TESTES
- Parameters:
- X: (n,c)
- Returns:
- W - c X c
Methods
fit
(X)Fitting by computing SVD of Covariance Matrix
Fit model and apply transformation
transform
(X)Transform given matrix X
whitening
(X)Whitening of matrix
- fit(X)¶
Fitting by computing SVD of Covariance Matrix
- Parameters:
- X: 2D array (n,c)
n - number of samples
c - number of channels (dimensions)
- Returns:
- Wc by c Matrix
Transformation Matrix
X.dot(W)
- fit_transform(X)¶
Fit model and apply transformation
- Parameters:
- X: 2D array (n,c)
n - number of samples
c - number of channels (dimensions)
- Returns:
- Xpca: Transformed Matrix
- transform(X)¶
Transform given matrix X
- Parameters:
- X: 2D array (n,c)
n - number of samples
c - number of channels (dimensions)
- Returns:
- Xpca: Transformed Matrix
- whitening(X)¶
Whitening of matrix